If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+212t+139
We move all terms to the left:
0-(-16t^2+212t+139)=0
We add all the numbers together, and all the variables
-(-16t^2+212t+139)=0
We get rid of parentheses
16t^2-212t-139=0
a = 16; b = -212; c = -139;
Δ = b2-4ac
Δ = -2122-4·16·(-139)
Δ = 53840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{53840}=\sqrt{16*3365}=\sqrt{16}*\sqrt{3365}=4\sqrt{3365}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-212)-4\sqrt{3365}}{2*16}=\frac{212-4\sqrt{3365}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-212)+4\sqrt{3365}}{2*16}=\frac{212+4\sqrt{3365}}{32} $
| (3+2x)(5+2x)=45 | | -15=-7a-4a | | 12x-9x=-15 | | 2z-3=27 | | 3(x+6)=-5x+3 | | (3+2x)(5+2x)=5 | | 60+60x=+1 | | (3+2x)(5+2x)=25 | | 10=44-3x | | x+0.96=0.27 | | 25=4(w+7)-7w | | (3+2x)(5+2x)=20 | | 8=-x+3x | | 1+6x+9+2x=90 | | (3+2x)(5+2x)=15 | | -2x(3x-4)=4x | | (3+2x)(5+2x)=30 | | x=-5(4+x) | | 84+62+2x=180 | | 3m-9=m+7 | | 3x+x+50+2x-20=180 | | 130=−10v | | -17=15f-256 | | -4(x+13)=80-3x | | a-2.3=4.8* | | 41=4x=-15 | | 6x+45+9x+15=90 | | 84+62+x=180 | | x^2-20x=-93 | | 6m+15=8m−11 | | 7x-9=-4x+90 | | x-2+x-2/4=0 |